z-logo
open-access-imgOpen Access
Digital Forensics Use Case for Glaucoma Detection Using Transfer Learning Based on Deep Convolutional Neural Networks
Author(s) -
Jahanzaib Latif,
Shanshan Tu,
Chuangbai Xiao,
Sadaqat Ur Rehman,
Mazhar Sadiq,
Muhammad Farhan
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/4494447
Subject(s) - computer science , convolutional neural network , artificial intelligence , deep learning , discriminative model , transfer of learning , segmentation , computer aided diagnosis , glaucoma , pattern recognition (psychology) , contextual image classification , machine learning , computer vision , image (mathematics) , medicine , ophthalmology
In parallel with the development of various emerging fields such as computer vision and related technologies, e.g., iris identification and glaucoma detection, criminals are developing their methods. It is the foremost reason for the blindness of human beings that affects the eye’s optic nerve. Fundus photography is carried out to examine this eye disease. Medical experts evaluate fundus photographs, which is a time-consuming visual inspection. Most current systems for automated glaucoma detection in fundus images rely on segmentation-based features nuanced by the underlying segmentation methods. Convolutional neural networks (CNNs) are powerful tools for solving image classification tasks, as they can learn highly discriminative features from raw pixel intensities. However, their applicability to medical image analysis is limited by the nonavailability of large sets of annotated data required for training. In this work, we aim to accelerate this process using a computer-aided diagnosis of this severe disease with the help of transfer learning based on deep convolutional neural networks. We have suggested the Inception V-3 approach for image classification based on convolution neural networks. Our developed model has the potential to address this CNN model’s problem of classification accuracy, and with imaging data, our proposed method outperforms recent state-of-the-art approaches. The case study for digital forensics is an essential component of emerging technologies, and hence glaucoma detection plays a vital role in it.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom