Near Optimality of Linear Delayed Doubly Stochastic Control Problem
Author(s) -
Jie Xu,
Ruiqiang Lin
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/4487092
Subject(s) - mathematics , optimal control , stochastic control , maximum principle , regular polygon , state (computer science) , control (management) , domain (mathematical analysis) , control theory (sociology) , linear quadratic gaussian control , mathematical optimization , mathematical analysis , computer science , algorithm , geometry , artificial intelligence
In this paper, we study a kind of near optimal control problem which is described by linear quadratic doubly stochastic differential equations with time delay. We consider the near optimality for the linear delayed doubly stochastic system with convex control domain. We discuss the case that all the time delay variables are different. We give the maximum principle of near optimal control for this kind of time delay system. The necessary condition for the control to be near optimal control is deduced by Ekeland’s variational principle and some estimates on the state and the adjoint processes corresponding to the system.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom