z-logo
open-access-imgOpen Access
Musculoskeletal Rehabilitation Status Monitoring Based on sEMG
Author(s) -
Xue Han,
Yan Zhao,
Feng Wang,
Zun Liu
Publication year - 2021
Publication title -
mobile information systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.346
H-Index - 34
eISSN - 1875-905X
pISSN - 1574-017X
DOI - 10.1155/2021/4482578
Subject(s) - rehabilitation , mean squared error , physical medicine and rehabilitation , computer science , electromyography , physical therapy , sample size determination , reduction (mathematics) , medicine , artificial neural network , artificial intelligence , mathematics , statistics , geometry
The reduction and improper movements in people’s modern life will lead to physical discomfort, pain, and inflammation, which have generally affected the quality of people’s daily life and work efficiency. The pain caused by improper movements are called musculoskeletal pain, which can be relieved or eliminated with treatment. Musculoskeletal disorders are actually one of the most common medical conditions, which affects approximately one quarter of all adults in the world. Although surface electromyography (sEMG) is an acknowledged technology in musculoskeletal rehabilitation study, it is considerably significant to monitor the musculoskeletal rehabilitation status based on sEMG. In order to monitor the musculoskeletal rehabilitation status, we combine fuzzy theory with neural network. This article proposes variable size, sliding window-based, generalized, dynamic, fuzzy neural network (GD-FNN), musculoskeletal rehabilitation status monitoring, that is, the window length of sliding window of sample data changes with the size of sample period. Finally, this study made a simulation on subjects, and the experimental results show that the proposed variable size, sliding window-based GD-FNN, musculoskeletal rehabilitation status monitoring method not only has good monitoring effect but also put on a good performance in root-mean-squared error (RMSE) and mean absolute percentage error (MAPE).

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom