Optimization of the Hybrid Movie Recommendation System Based on Weighted Classification and User Collaborative Filtering Algorithm
Author(s) -
Zhenning Yuan,
Jong Han Lee,
Sai Zhang
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/4476560
Subject(s) - collaborative filtering , computer science , recommender system , preference , cluster analysis , data mining , algorithm , matrix (chemical analysis) , information retrieval , artificial intelligence , machine learning , mathematics , statistics , materials science , composite material
Aiming at the problem that the single model of the traditional recommendation system cannot accurately capture user preferences, this paper proposes a hybrid movie recommendation system and optimization method based on weighted classification and user collaborative filtering algorithm. The sparse linear model is used as the basic recommendation model, and the local recommendation model is trained based on user clustering, and the top-N personalized recommendation of movies is realized by fusion with the weighted classification model. According to the item category preference, the scoring matrix is converted into a low-dimensional, dense item category preference matrix, multiple cluster centers are obtained, the distance between the target user and each cluster center is calculated, and the target user is classified into the closest cluster. Finally, the collaborative filtering algorithm is used to predict the scores for the unrated items of the target user to form a recommendation list. The items are clustered through the item category preference, and the high-dimensional rating matrix is converted into a low-dimensional item category preference matrix, which further reduces the sparsity of the data. Experiments based on the Douban movie dataset verify that the recommendation algorithm proposed in this article solves the shortcomings of a single algorithm model to a certain extent and improves the recommendation effect.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom