z-logo
open-access-imgOpen Access
Early Warning for the Construction Safety Risk of Bridge Projects Using a RS‐SSA‐LSSVM Model
Author(s) -
Li Gang,
Ruijiang Ran,
Jun Fang,
Hao Peng,
Shengmin Wang
Publication year - 2021
Publication title -
advances in civil engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.379
H-Index - 25
eISSN - 1687-8094
pISSN - 1687-8086
DOI - 10.1155/2021/4449451
Subject(s) - warning system , bridge (graph theory) , early warning system , support vector machine , engineering , computer science , artificial neural network , safety monitoring , machine learning , aerospace engineering , medicine , biology , microbiology and biotechnology
Bridge engineering is an important component of the transportation system, and early warnings of construction safety risks are crucial for bridge engineering construction safety. To solve the challenges faced by early warnings risk and the low early warning accuracy in bridge construction safety, this study proposed a new early-warning model for bridge construction safety risk. The proposed model integrates a rough set (RS), the sparrow search algorithm (SSA), and the least squares support vector machine (LSSVM). In particular, the initial early warning factors of bridge construction safety risk from five factors (men, machines, methods, materials, and environment) were selected, and the RS was used to reduce the attributes of 20 initial early warning factors to obtain the optimized early warning factor set. This overcame the problem of multiple early warning factors and reduced the complexity of the subsequent prediction model. Then, the LSSVM with the strongest nonlinear modelling ability was selected to build the bridge construction early-warning model and adopted the SSA to optimize the LSSVM parameter combination, improving the early warning accuracy. The Longlingshan Project in Wuhan and the Shihe Bridge Project in Xinyang, China, were then selected as case studies for empirical research. Results demonstrated a significant improvement in the performance of the early-warning model following the removal of redundancy or interference factors via the RS. Compared with the standard LSSVM, Back Propagation Neural Network and other traditional early-warning models, the proposed model exhibited higher computational efficiency and a better early warning performance. The research presented in this article has important theoretical and practical significance for the improvement of the early warning management of bridge construction safety risks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom