z-logo
open-access-imgOpen Access
Research on Mechanical Response of Pavement Structure to Differential Settlement of Subgrade on Highway Widening
Author(s) -
Quanjun Shen,
Yu Lu,
Yaohui Yang,
Guanxu Long
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/4445185
Subject(s) - subgrade , settlement (finance) , materials science , differential (mechanical device) , geotechnical engineering , geology , computer science , physics , thermodynamics , world wide web , payment
Based on the widening project of Ri-Lan highway in China, the finite element model is established by PLAXIS. By applying differential settlement at the bottom of the pavement, the mechanical response of the pavement structure is analysed. Finally, the differential settlement control standard indicated by crack strength is proposed. The results show that, under the effect of differential settlement, within about 4 cm of old pavement surface and upper base bear tensile stress, the base first reaches the failure strength. Under 4 cm of the old pavement surface, the subbase first reaches the failure strength. The differential settlement control standard of the pavement structure is determined by the splitting strength of the material, and we, respectively, control the differential settlement of less than 23.4 mm, where the corresponding cross-slope rate is 0.33%, and below 75.2 mm, where the corresponding cross-slope rate is 0.54%. It could support practical engineering applications.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom