An Efficient DOA Estimation Algorithm Based on Diagonal-Symmetric Loading
Author(s) -
Yangyang Xie,
Biao Wang,
Feng Chen
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/4432040
Subject(s) - algorithm , subspace topology , orthogonality , diagonal , covariance matrix , direction of arrival , noise (video) , eigenvalues and eigenvectors , computer science , mathematics , minimum variance unbiased estimator , signal subspace , covariance , mathematical optimization , statistics , mean squared error , telecommunications , artificial intelligence , antenna (radio) , physics , geometry , quantum mechanics , image (mathematics)
In order to solve the problem that the subspace-like direction of arrival (DOA) estimation performs poor due to the error of sources number, this paper proposes a new super-resolution DOA estimation algorithm based on the diagonal-symmetric loading (DSL). Specifically, orthogonality principle of the minimum eigenvector of the specific covariance matrix and the source number estimation based on the improved K-means method were adopted to construct the spatial spectrum. Then, by considering the signal-to-interference-to-noise ratio (SINR), the theoretical basis for selecting parameters was given and verified by numerical experiment. To evaluate the effectiveness of the proposed algorithm, this paper compared it with the methods of minimum variance distortionless response (MVDR) and new signal subspace processing (NSSP). Experimental results prove that the proposed DSL has higher resolution and better estimation accuracy than the MVDR and NSSP.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom