Experimental Investigation of the Effects of the Gangue Particle Size on the Evolution Rules of Key Seepage Parameters
Author(s) -
Lihua Wang,
Jixiong Zhang,
Wei Yongqi,
Cunli Zhu,
Gaolei Zhu
Publication year - 2021
Publication title -
geofluids
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.44
H-Index - 56
eISSN - 1468-8123
pISSN - 1468-8115
DOI - 10.1155/2021/4410254
Subject(s) - groundwater related subsidence , geotechnical engineering , foundation (evidence) , permeability (electromagnetism) , computer simulation , porosity , gangue , displacement (psychology) , groundwater , subsidence , geology , environmental science , materials science , engineering , simulation , psychology , paleontology , genetics , archaeology , structural basin , membrane , biology , metallurgy , psychotherapist , history
In order to deal with solid wastes and protect the fragile ecological environment on the ground, using gangues as the filling materials in the underground goaf can not only achieve favorable waste disposal but also alleviate surface subsidence and protect surface buildings and the ecological environment, with great practical significance and application prospects. During the water seepage process, the evolution rules of inner seepage channels in the bulk filling materials are the theoretical foundation for the realization of water-preserved mining. In order to gain clear knowledge of the seepage characteristics of the bulk filling gangues with different sizes, the evolution rules of some seepage parameters mainly including the displacement, the porosity, and the permeability of gangues and hydraulic pressure were analyzed via COMSOL numerical simulation. The evolution rules of the seepage characteristics of the bulk filling materials with different sizes were revealed by combining the present experimental and numerical results. Moreover, the present seepage experiment was proved to be reliable by comparing with numerical simulation results. This work can provide theoretical foundation for investigating the evolution characteristics of inner seepage paths in the bulk filling materials and selecting appropriate bulk filling materials under different stress and seepage environments.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom