Influence Diagnostic Methods in the Poisson Regression Model with the Liu Estimator
Author(s) -
Aamna Khan,
Muhammad Amanullah,
Muhammad Amin,
Randa Alharbi,
Abdisalam Hassan Muse,
M. S. Mohamed
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/4407328
Subject(s) - multicollinearity , poisson regression , statistics , estimator , regression analysis , poisson distribution , computer science , regression , econometrics , reliability (semiconductor) , mathematics , population , power (physics) , physics , demography , quantum mechanics , sociology
There is a long history of interest in modeling Poisson regression in different fields of study. The focus of this work is on handling the issues that occur after modeling the count data. For the prediction and analysis of count data, it is valuable to study the factors that influence the performance of the model and the decision based on the analysis of that model. In regression analysis, multicollinearity and influential observations separately and jointly affect the model estimation and inferences. In this article, we focused on multicollinearity and influential observations simultaneously. To evaluate the reliability and quality of regression estimates and to overcome the problems in model fitting, we proposed new diagnostic methods based on Sherman–Morrison Woodbury (SMW) theorem to detect the influential observations using approximate deletion formulas for the Poisson regression model with the Liu estimator. A Monte Carlo method is done for the assessment of the proposed diagnostic methods. Real data are also considered for the evaluation of the proposed methods. Results show the superiority of the proposed diagnostic methods in detecting unusual observations in the presence of multicollinearity compared to the traditional maximum likelihood estimation method.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom