z-logo
open-access-imgOpen Access
[Retracted] Object‐Based Image Retrieval Using the U‐Net‐Based Neural Network
Author(s) -
Sandeep Kumar,
Arpit Jain,
Ambuj Kumar Agarwal,
Shilpa Rani,
A Ghimire
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/4395646
Subject(s) - computer science , artificial intelligence , benchmark (surveying) , pattern recognition (psychology) , image retrieval , haar wavelet , artificial neural network , feature extraction , feature (linguistics) , precision and recall , convolutional neural network , wavelet , wavelet transform , image (mathematics) , discrete wavelet transform , linguistics , philosophy , geodesy , geography
Day by day, all the research communities have been focusing on digital image retrieval due to more internet and social media uses. In this paper, a U-Net-based neural network is proposed for the segmentation process and Haar DWT and lifting wavelet schemes are used for feature extraction in content-based image retrieval (CBIR). Haar wavelet is preferred as it is easy to understand, very simple to compute, and the fastest. The U-Net-based neural network (CNN) gives more accurate results than the existing methodology because deep learning techniques extract low-level and high-level features from the input image. For the evaluation process, two benchmark datasets are used, and the accuracy of the proposed method is 93.01% and 88.39% on Corel 1K and Corel 5K. U-Net is used for the segmentation purpose, and it reduces the dimension of the feature vector and feature extraction time by 5 seconds compared to the existing methods. According to the performance analysis, the proposed work has proven that U-Net improves image retrieval performance in terms of accuracy, precision, and recall on both the benchmark datasets.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom