z-logo
open-access-imgOpen Access
Multiset Canonical Correlations Analysis of Bidimensional Intrinsic Mode Functions for Automatic Target Recognition of SAR Images
Author(s) -
Yong Ding
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/4392702
Subject(s) - pattern recognition (psychology) , artificial intelligence , hilbert–huang transform , computer science , automatic target recognition , discriminative model , multiset , target acquisition , synthetic aperture radar , support vector machine , feature (linguistics) , canonical correlation , classifier (uml) , feature vector , computer vision , mathematics , linguistics , philosophy , filter (signal processing) , combinatorics
A novel feature generation algorithm for the synthetic aperture radar image is designed in this study for automatic target recognition. As an adaptive 2D signal processing technique, bidimensional empirical mode decomposition is employed to generate multiscale bidimensional intrinsic mode functions from the original synthetic aperture radar images, which could better capture the broad spectral information and details of the target. And, the combination of the original image and decomposed bidimensional intrinsic mode functions could promisingly provide more discriminative information for correct target recognition. To reduce the high dimension of the original image as well as bidimensional intrinsic mode functions, multiset canonical correlations analysis is adopted to fuse them as a unified feature vector. The resultant feature vector highly reduces the high dimension while containing the inner correlations between the original image and decomposed bidimensional intrinsic mode functions, which could help improve the classification accuracy and efficiency. In the classification stage, the support vector machine is taken as the basic classifier to determine the target label of the test sample. In the experiments, the 10-class targets in the moving and stationary target acquisition and recognition dataset are classified to investigate the performance of the proposed method. Several operating conditions and reference methods are setup for comprehensive evaluation.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom