Stability Analysis of Surrounding Rock of Large Section Ultradeep Shaft Wall
Author(s) -
Li Cheng,
Wang Chun-long,
Xi Wang,
Kexu Chen
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/4391759
Subject(s) - excavation , geotechnical engineering , geology , stress (linguistics) , deformation (meteorology) , bearing (navigation) , fracture (geology) , rock burst , mining engineering , engineering , coal , philosophy , linguistics , oceanography , cartography , coal mining , geography , waste management
In order to study the stability of deep surrounding rock during the excavation of new main shaft in Xincheng gold mine, a construction method suitable for large section ultradeep shaft is proposed. A series of analyses were carried out in this study, including the in situ stress test, stress response of surrounding rock disturbance, deformation and failure characteristics, and numerical simulation. Based on the above analysis, the stability control method of surrounding rock in the process of deep excavation of the new main shaft is proposed. The results show that (1) the maximum principal stress of deep surrounding rock of new main shaft is horizontal stress, and the surrounding rock of the shaft has strong rock burst tendency after excavation; (2) the influence range of the deep shaft excavation disturbance is 6.4 times the shaft radius, in which the temporary support should be strengthened to avoid the influence of excavation disturbance on the stability of shaft wall rock; (3) the failure shape of surrounding rock of the deep shaft excavation was “ear” failure, and the failure depth was not more than 2.5 m; (4) after replacing the original “one-excavation and one-masonry” construction with “three-excavation and one-masonry” construction, the temporary support span of the main shaft was adjusted to 12 m, which can make the subsequent concrete shaft wall in the state of “no pressure bearing or slow low pressure bearing,” and the lining compressive safety coefficient was increased to 1.98, which meets the safety requirements.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom