A Study of Athlete Pose Estimation Techniques in Sports Game Videos Combining Multiresidual Module Convolutional Neural Networks
Author(s) -
Rui Liu
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/4367875
Subject(s) - convolutional neural network , residual , computer science , artificial intelligence , field (mathematics) , pose , pattern recognition (psychology) , artificial neural network , computer vision , algorithm , mathematics , pure mathematics
In this paper, we propose a multiresidual module convolutional neural network-based method for athlete pose estimation in sports game videos. The network firstly designs an improved residual module based on the traditional residual module. Firstly, a large perceptual field residual module is designed to learn the correlation between the athlete components in the sports game video within a large perceptual field. A multiscale residual module is designed in the paper to better solve the inaccuracy of the pose estimation due to the problem of scale change of the athlete components in the sports game video. Secondly, these three residual modules are used as the building blocks of the convolutional neural network. When the resolution is high, the large perceptual field residual module and the multiscale residual module are used to capture information in a larger range as well as at each scale, and when the resolution is low, only the improved residual module is used. Finally, four multiresidual module convolutional neural networks are used to form the final multiresidual module stacked convolutional neural network. The neural network model proposed in this paper achieves high accuracy of 89.5% and 88.2% on the upper arm and lower arm, respectively, so the method in this paper reduces the influence of occlusion on the athlete’s posture estimation to a certain extent. Through the experiments, it can be seen that the proposed multiresidual module stacked convolutional neural network-based method for athlete pose estimation in sports game videos further improves the accuracy of athlete pose estimation in sports game videos.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom