Mathematical Model of Maximum Commutation Half Cycle for Thermal Countercurrent Oxidation of Low-Concentration Gas in Coal Mine Ventilation
Author(s) -
Kuan Wu,
Shiliang Shi,
Yong Chen
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/4361712
Subject(s) - countercurrent exchange , fluent , commutation , coal , methane , mechanics , ventilation (architecture) , engineering , inlet , thermal , computer simulation , environmental science , control theory (sociology) , nuclear engineering , simulation , thermodynamics , chemistry , waste management , mechanical engineering , physics , computer science , electrical engineering , control (management) , organic chemistry , voltage , artificial intelligence
The Fluent computational fluid dynamics software was used to study the relevant factors affecting the maximum commutation half cycle for thermal countercurrent oxidation of low-concentration gas in coal mine ventilation. Based on orthogonal experiments, the maximum commutation half cycle for thermal countercurrent oxidation of the exhaust gas in the coal mine ventilation under 25 working conditions with the combination of different methane concentrations, inlet speeds, porosities, and oxidation bed filling lengths is investigated. SPSS data processing software was used to perform regression analysis on the numerical simulation data, and a mathematical model for predicting the maximum commutation half cycle under the influence of four factors was obtained. Through experiments, the mathematical model of the maximum commutation half cycle by the numerical simulation was verified. After introducing the wall heat loss correction coefficient, the complete prediction model of the maximum commutation half cycle was obtained. Comparing the experimental test value with the calculated value using the corrected model, the relative error was not more than 3%. The complete mathematical model corrected can be applied to the design calculation of the maximum commutation half cycle for thermal countercurrent oxidation of low-concentration gas in actual coal mine ventilation.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom