Predicting Learning Behavior Using Log Data in Blended Teaching
Author(s) -
Shutong Xie,
Zongbao He,
Chen Qiong,
Rongxin Chen,
Qingzhao Kong,
Cun-Ying Song
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/4327896
Subject(s) - computer science , machine learning , artificial intelligence , genetic algorithm , feature selection , java , classifier (uml) , selection (genetic algorithm) , binary classification , support vector machine , programming language
Online and offline blended teaching mode, the future trend of higher education, has recently been widely used in colleges around the globe. In the article, we conducted a study on students’ learning behavior analysis and student performance prediction based on the data about students’ behavior logs in three consecutive years of blended teaching in a college’s “Java Language Programming” course. Firstly, the data from diverse platforms such as MOOC, Rain Classroom, PTA, and cnBlog are integrated and preprocessed. Secondly, a novel multiclass classification framework, combining the genetic algorithm (GA) and the error correcting output codes (ECOC) method, is developed to predict the grade levels of students. In the framework, GA is designed to realize both the feature selection and binary classifier selection to fit the ECOC models. Finally, key factors affecting grades are identified in line with the optimal subset of features selected by GA, which can be analyzed for teaching significance. The results show that the multiclass classification algorithm designed in this article can effectively predict grades compared with other algorithms. In addition, the selected subset of features corresponding to learning behaviors is pedagogically instructive.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom