AGV Scheduling Optimization for Medical Waste Sorting System
Author(s) -
Xueting He,
Hao Quan,
Wanlong Lin,
Weiliang Deng,
Zheyi Tan
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/4313749
Subject(s) - sorting , computer science , scheduling (production processes) , conveyor system , integer programming , medical waste , job shop scheduling , sensitivity (control systems) , mathematical optimization , algorithm , engineering , waste management , mathematics , embedded system , mechanical engineering , electronic engineering , routing (electronic design automation)
The dramatic increase in medical waste has put a severe strain on sorting operations. Traditional manual order picking is extremely susceptible to infection spread among workers and picking errors, while automated medical waste sorting systems can handle large volumes of medical waste efficiently and reliably. This paper investigates the optimization problem in the automated medical waste sorting system by considering the operational flow of medical waste. For this purpose, a mixed-integer programming model is developed to optimize the assignment among medical waste, presorting stations, and AGVs. An effective variable neighborhood search based on dynamic programming algorithm is proposed, and extensive numerical experiments are conducted. It is found that the proposed algorithm can efficiently solve the optimization problem, and the sensitivity analysis gives recommendations for the speed setting of the conveyor.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom