z-logo
open-access-imgOpen Access
Penetration Planning and Design Method of Unmanned Aerial Vehicle Inspired by Biological Swarm Intelligence Algorithm
Author(s) -
Fengtao Xiang,
Keqin Chen,
Jiongming Su,
Hongfu Liu,
Wanpeng Zhang
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/4312592
Subject(s) - ant colony optimization algorithms , motion planning , computer science , swarm intelligence , swarm behaviour , path (computing) , heuristic , algorithm , ant colony , mathematical optimization , artificial intelligence , particle swarm optimization , robot , mathematics , programming language
Unmanned aerial vehicles (UAVs) are gradually used in logistics transportation. They are forbidden to fly in some airspace. To ensure the safety of UAVs, reasonable path planning and design is one of the key factors. Aiming at the problem of how to improve the success rate of unmanned aerial vehicle (UAV) maneuver penetration, a method of UAV penetration path planning and design is proposed. Ant colony algorithm has strong path planning ability in biological swarm intelligence algorithm. Based on the modeling of UAV planning and threat factors, improved ant colony algorithm is used for UAV penetration path planning and design. It is proposed that the path with the best pheromone content is used as the planning path. Some principles are given for using ant colony algorithm in UAV penetration path planning. By introducing heuristic information into the improved ant colony algorithm, the convergence is completed faster under the same number of iteratives. Compared with classical methods, the total steps reduced by 56% with 50 ant numbers and 200 iterations. 62% fewer steps to complete the first iteration. It is found that the optimal trajectory planned by the improved ant colony algorithm is smoother and the shortest path satisfying the constraints.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom