Evolutionary Algorithm for Multiobjective Optimization Based on Density Estimation Ranking
Author(s) -
Lin Li,
Hengfei Wu,
Xiujian Hu,
Guanglei Sheng
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/4296642
Subject(s) - computer science , ranking (information retrieval) , evolutionary algorithm , multi objective optimization , estimation of distribution algorithm , mathematical optimization , estimation , density estimation , algorithm , optimization algorithm , data mining , machine learning , artificial intelligence , mathematics , statistics , estimator , economics , management
In the past few decades, a number of multiobjective evolutionary algorithms (MOEAs) have been proposed in the continue study. As pointed out in some recent studies, the performance of the most existing MOEAs is not promising when solving different shapes of Pareto fronts. To address this issue, this paper proposes an MOEA based on density estimation ranking. The algorithm includes density estimation ranking to shift the reference solution position, calculating the density of candidate solutions and ranking by the estimated density value, to modify the Pareto dominance relation and for handling complicated Pareto front. The result of this ranking can be used as the second selection criterion for environmental selection, and the optimal candidate individual with distribution and diversity information is selected. Experimental results show that the proposed algorithm can solve various types of Pareto fronts, outperformance several state-of-the-art evolutionary algorithms in multiobjective optimization.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom