Exploring the Pleiotropic Genes and Therapeutic Targets Associated with Heart Failure and Chronic Kidney Disease by Integrating metaCCA and SGLT2 Inhibitors’ Target Prediction
Author(s) -
Huanqiang Li,
Ziling Mai,
Sijia Yu,
Bo Wang,
Wenguang Lai,
Guanzhong Chen,
Chunyun Zhou,
Jin Liu,
Yongquan Yang,
Shiqun Chen,
Yong Liu,
Jiyan Chen
Publication year - 2021
Publication title -
biomed research international
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.772
H-Index - 126
eISSN - 2314-6141
pISSN - 2314-6133
DOI - 10.1155/2021/4229194
Subject(s) - pleiotropy , genome wide association study , kegg , drugbank , computational biology , biology , gene , single nucleotide polymorphism , candidate gene , genetic association , transcriptome , genetics , bioinformatics , phenotype , pharmacology , drug , genotype , gene expression
Background Previous studies have shown that heart failure (HF) and chronic kidney disease (CKD) have common genetic mechanisms, overlapping pathophysiological pathways, and therapeutic drug—sodium-glucose cotransporter 2 (SGLT2) inhibitors.Methods The genetic pleiotropy metaCCA method was applied on summary statistics data from two independent meta-analyses of GWAS comprising more than 1 million people to identify shared variants and pleiotropic effects between HF and CKD. Targets of SGLT2 inhibitors were predicted by SwissTargetPrediction and DrugBank databases. To refine all genes, we performed using versatile gene-based association study 2 (VEGAS2) and transcriptome-wide association studies (TWAS) for HF and CKD, respectively. Gene enrichment and KEGG pathway analyses were used to explore the potential functional significance of the identified genes and targets.Results After metaCCA analysis, 4,624 SNPs and 1,745 genes were identified to be potentially pleiotropic in the univariate and multivariate SNP-multivariate phenotype analyses, respectively. 21 common genes were detected in both metaCCA and SGLT2 inhibitors' target prediction. In addition, 169 putative pleiotropic genes were identified, which met the significance threshold both in metaCCA analysis and in the VEGAS2 or TWAS analysis for at least one disease.Conclusion We identified novel variants associated with HF and CKD using effectively incorporating information from different GWAS datasets. Our analysis may provide new insights into HF and CKD therapeutic approaches based on the pleiotropic genes, common targets, and mechanisms by integrating the metaCCA method, TWAS and VEGAS2 analyses, and target prediction of SGLT2 inhibitors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom