Multiobjective Differential Evolution with Discrete Elite Guide in Internet of Vehicles Roadside Unit Deployment
Author(s) -
Feng Wang,
Chenle Wang,
Kan Wang,
Qiaoyong Jiang,
Bin Wang,
Wenjuan He
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/4207130
Subject(s) - software deployment , computer science , the internet , elite , unit (ring theory) , differential (mechanical device) , differential evolution , computer network , telecommunications , operations research , computer security , world wide web , artificial intelligence , operating system , mathematics , aerospace engineering , mathematics education , engineering , politics , political science , law
In a vehicular ad hoc network (VANET), roadside units (RSUs) are installed at roadside and intersections to process vehicle-to-infrastructure communication, collect and analyse intelligent vehicle traffic data, send information to vehicles, and achieve early warning of safe driving of vehicles. Owning to the high cost of implementing and maintaining RSUs, it is of vital importance to determine where and how many RSUs to deploy. Optimal RSU deployment requires both a small number of RSUs and the maximum coverage of vehicle running process, which constitutes a conflicting multiobjective problem. Nevertheless, existing works do not explicitly utilize multiobjective algorithm to solve the RSU deployment problem. Therefore, a multiobjective differential evolution approach is proposed in this work to solve the problem. Firstly, to conquer the complexity of urban road RSU deployment, the static model is established. Secondly, in the proposed multiobjective differential evolution with discrete elitist guide (MODE-deg), the sigmoid function is applied to discrete individual values. Finally, elitist individuals are selected based on crowding distance ranking and nondominated ranking to generate new individuals, which further improve the convergence speed and population performance. Experimental results show that MODE-deg can generate the optimal nondominant solution set with good convergence and diversity, in contrast to other multiobjective evolutionary algorithms in five test functions of ZDT.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom