Exponentially Fitted Element-Free Galerkin Approach for Nonlinear Singularly Perturbed Problems
Author(s) -
Jagbir Kaur,
Vivek Sangwan
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/4165954
Subject(s) - mathematics , galerkin method , nonlinear system , element (criminal law) , exponential growth , mathematical analysis , calculus (dental) , physics , quantum mechanics , medicine , dentistry , political science , law
As it is well recognized that conventional numerical schemes are inefficient in approximating the solutions of the singularly perturbed problems (SPP) in the boundary layer region, in the present work, an effort has been made to propose a robust and efficient numerical approach known as element-free Galerkin (EFG) technique to capture these solutions with a high precision of accuracy. Since a lot of weight functions exist in the literature which plays a crucial role in the moving least square (MLS) approximations for generating the shape functions and hence affect the accuracy of the numerical solution, in the present work, due emphasis has been given to propose a robust weight function for the element-free Galerkin scheme for SPP. The key feature of nonrequirement of elements or node connectivity of the EFG method has also been utilized by proposing a way to generate nonuniformly distributed nodes. In order to verify the computational consistency and robustness of the proposed scheme, a variety of linear and nonlinear numerical examples have been considered and L ∞ errors have been presented. Comparison of the EFG solutions with those available in the literature depicts the superiority of the proposed scheme.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom