z-logo
open-access-imgOpen Access
Effects of Elemental Mercury Vapor Inhalation on Arterial Blood Gases, Lung Histology, and Interleukin-1 Expression in Pulmonary Tissues of Rats
Author(s) -
Liqaa Raffee,
Khaled Alawneh,
Ruba A. Alassaf,
Abdallah Alzoubi,
Musa Alshehabat,
Nadeem Alabdallah,
AbdelHameed AlMistarehi
Publication year - 2021
Publication title -
the scientific world journal
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.453
H-Index - 93
eISSN - 2356-6140
pISSN - 1537-744X
DOI - 10.1155/2021/4141383
Subject(s) - inhalation , histology , lung , arterial blood , medicine , pco2 , respiratory system , pathology , anesthesia
We investigated the effects of elemental mercury vapor inhalation on arterial blood gases (ABGs), lung histology, and interleukin-1 (IL-1) expression in pulmonary tissues in rats. A total of 42 Sprague Dawley rats were divided randomly into three groups. Rats in the first group were used as the control (CG). A short-term group (STG) and a long-term group (LTG) were exposed to 500  μ g/m 3 of mercury vapor 2 hrs/day for 21 days and 65 days, respectively. After exposure periods were completed, arterial blood samples were obtained, and ABGs were measured. Lung tissue sections were prepared for histology evaluation and immune-stained to detect IL-1 expression. There was a significant decrease in body weight in both STG (15%) and LTG (22%) compared with the CG. In the LTG, six out of 14 (43%) rats died, including two males and four females, while none of the rats in the STG died during the experiment. In both STG and LTG, a significant acid-base imbalance was characterized by a significant decrease in blood pH values and a significant increase in PCO 2 values. Both PO 2 and SpO 2 blood values were significantly decreased in the STG and LTG, while no changes were observed in HCO 3 values in all groups. Histological evaluation of lung tissues revealed severe lesions characterized by pulmonary emphysema and inflammatory cellular infiltrate. IL-1 expression in lung tissues was not significantly different between exposed rats and control subjects. These results indicate significant alterations in blood acid-base status characterized by severe respiratory acidosis with hypoxemia and no evidence of compensatory alkalosis in rats after exposure to short- and long-term elementary mercury vapor.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom