z-logo
open-access-imgOpen Access
Semiconductor Quantum Dots (CdX, X = S, Te, Se) Modify Titanium Dioxide Nanoparticles for Photodynamic Inactivation of Leukemia HL60 Cancer Cells
Author(s) -
Qilin Pan,
Miaomiao Li,
Mucang Xiao,
Yulu He,
Guangyu Sun,
Ting Xue,
Youhuan Luo,
Li Chen,
Bao-quan Ai,
Jianwen Xiong
Publication year - 2021
Publication title -
journal of nanomaterials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.463
H-Index - 66
eISSN - 1687-4129
pISSN - 1687-4110
DOI - 10.1155/2021/4125350
Subject(s) - materials science , titanium dioxide , photocatalysis , quantum dot , band gap , photodynamic therapy , visible spectrum , ultraviolet , nanocomposite , semiconductor , photochemistry , optoelectronics , nanotechnology , nanoparticle , chemistry , organic chemistry , metallurgy , catalysis
Titanium dioxide nanoparticles (TiO2-NPs) are highly efficient photosensitizers in traditional photodynamic therapy (PDT). The particle size of TiO2-NPs is small, only about 20 nm. However, the demands of ultraviolet light (UV) excitation feature shallow tissue penetration depth and may lead to severe tissue photon damage. Thus, in this research, TiO2-NPs are modified with semiconductor quantum dots (QDs) CdX (X = S, Te, Se) in various methods, such as ultrasonic, hydrothermal, sol-gel, aqueous phase, and hydrolysis precipitation. The transmission electron microscopy (TEM) images show that the size of CdSe-TiO2 is ranging from 6 to 14 nm. The ultraviolet-visible (UV-Vis) spectrum demonstrates that the CdX (X = S, Te, Se) modification can successfully extend the absorption range of TiO2-NPs into a different visible light region. CdSe QDs have the narrowest band gap compared with CdX (X = S, Te, Se) QDs. Visible light-activated CdSe-TiO2 nanocomposite shows the highest PDT inactivation efficiency toward HL60 cells compared with CdX-TiO2. The photogenerated carrier separation efficiency of CdSe-TiO2 nanocomposite is the highest shown in a fluorescence spectrum (FS). Furthermore, when conjugated with folic acid (FA), the prepared FA-CdX-TiO2 (X = S, Se) exhibits excellent cancer-targeting ability during PDT treatment. Optimum PDT efficiency of FA-CdSe-TiO2 indicates that photocatalytic and targeting ability is much higher than pure TiO2 and CdSe-TiO2. Our results provided a detailed investigation on the PDT performance of CdX (X = S, Te, Se) modified TiO2 and may act as a guide for further design of highly targeted performance visible-light response TiO2-NPs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom