z-logo
open-access-imgOpen Access
Cox-2 Antagonizes the Protective Effect of Sevoflurane on Hypoxia/Reoxygenation-Induced Cardiomyocyte Apoptosis through Inhibiting the Akt Pathway
Author(s) -
Chunyan Guo,
Lei Zhang,
Yaoxing Gao,
Junzhi Sun,
Lingling Fan,
Yuguang Bai,
Jing Zhang,
Naren Gaowa,
Yang Ji-wen,
Libiao Li
Publication year - 2021
Publication title -
disease markers
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.912
H-Index - 66
eISSN - 1875-8630
pISSN - 0278-0240
DOI - 10.1155/2021/4114593
Subject(s) - protein kinase b , apoptosis , hypoxia (environmental) , viability assay , chemistry , phosphorylation , sevoflurane , pharmacology , microbiology and biotechnology , biology , biochemistry , organic chemistry , oxygen
Objective. To uncover the protective role of sevoflurane on hypoxia/reoxygenation-induced cardiomyocyte apoptosis through the protein kinase B (Akt) pathway. Methods. An in vitro hypoxia/reoxygenation (H/R) model was established in cardiomyocyte cell line H9c2. Sevoflurane (SEV) was administrated in H9c2 cells during the reoxygenation period. Viability, layered double hydroxide (LDH) release, and apoptosis in H9c2 cells were determined to assess H/R-induced cell damage. Relative levels of apoptosis-associated genes were examined. Moreover, phosphorylation of Akt was determined. Results. H/R injury declined viability and enhanced LDH release and apoptotic rate in H9c2 cells. Cyclooxygenase-2 (Cox-2) was upregulated following H/R injury, which was partially reversed by SEV treatment. In addition, SEV treatment reversed changes in viability and LDH release owing to H/R injury in H9c2 cells, which were further aggravated by overexpression of Cox-2. The Akt pathway was inhibited in H9c2 cells overexpressing Cox-2. Conclusions. Sevoflurane protects cardiomyocyte damage following H/R via the Akt pathway, and its protective effect was abolished by overexpression of Cox-2.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom