z-logo
open-access-imgOpen Access
Research on the Relationship between Human Resource Management Activities and Enterprise Performance Based on the Supervised Learning Model
Author(s) -
Chan Sun,
Xiaojuan Li
Publication year - 2021
Publication title -
discrete dynamics in nature and society
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.264
H-Index - 39
eISSN - 1607-887X
pISSN - 1026-0226
DOI - 10.1155/2021/4094704
Subject(s) - hypersphere , computer science , support vector machine , sorting , artificial intelligence , class (philosophy) , machine learning , feature vector , cadet , space (punctuation) , data mining , algorithm , geography , archaeology , operating system
HRMS is a very critical tool for companies. The recruitment text contains rich information that can provide strong information support for the company’s recruitment work and also improve the efficiency of job seekers in finding job opportunities. To this end, for the problem of multilabel text classification of recruitment information, this paper provides two algorithms for multilayer classification based on supported SVM. First, the same learning subclass method is used for text sorting subclass acquisition, and then, the class of the text is determined. Second, the hemispherical support SVM is used to find the smallest hypersphere in the feature space that contains the most text of that class and segment the text of that class from other texts. For the text to be classified, the distance from it to the center of each hypersphere is used to determine the class of the text. Experimental results on recruitment data demonstrate that the algorithm in this paper has a high check-all rate, check-accuracy rate, and F1. And, the relationship between HRM activities and corporate performance is discussed.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom