[Retracted] Analysis of Sports Performance Prediction Model Based on GA‐BP Neural Network Algorithm
Author(s) -
Wang Jin-juan
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/4091821
Subject(s) - computer science , artificial neural network , algorithm , artificial intelligence , machine learning , data mining
There are many factors that affect athletes' sports performance in sports competitions. The traditional sports performance prediction method is difficult to obtain more accurate sports performance prediction results and corresponding data analysis in a short time, which is not conducive for coaches to formulate targeted and scientific training sprint plans for athletes' problems. Therefore, based on GA-BP neural network algorithm, this paper constructs a sports performance prediction model and carries out experiments and analysis. The experimental results show that GA-BP neural network algorithm has a faster convergence speed than BP neural network and can achieve the expected error accuracy in a shorter time, which overcomes the problems of the BP neural network. At the same time, different from the previous models, GA-BP neural network algorithm can get the athlete training model according to the relationship between quality training indicators and special sports training results, which can more intuitively show the advantages and disadvantages of athletes. In the final sports performance prediction results, GA-BP neural network prediction results have higher accuracy, better stability, better prediction effect, and higher application value than BP neural network.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom