z-logo
open-access-imgOpen Access
Prediction of Urban and Rural Tourism Economic Forecast Based on Machine Learning
Author(s) -
Wusheng Zhou
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/4072499
Subject(s) - tourism , revenue , cointegration , economics , construct (python library) , econometrics , business , computer science , geography , finance , archaeology , programming language
With the rapid development of tourism, tourism revenue, as one of the important indicators to measure the development of the tourism economy, has high research value. The quasi-prediction of tourism revenue can drive the development of a series of related industries and accelerate the development of the domestic economy. When forecasting tourism income, it is necessary to examine the causal relationship between tourism income and local economic development. The traditional cointegration analysis method is to extract the promotion characteristics of tourism income to the local economy and construct a tourism income prediction model, but it cannot accurately describe the causal relationship between tourism income and local economic development and cannot accurately predict tourism income. We propose an optimized forecasting method of tourism revenue based on time series. This method first conducts a cointegration test on the time series data of the relationship between tourism income and local economic development, constructs a two-variable autoregressive model of tourism income and local economy, and uses the swarm intelligence method to test the causal relationship and the relationship between tourism income and local economic development, calculate the proportion of tourism industry, define the calculation result as the direct influence factor of tourism industry on the local economy, calculate the relevant effect of local tourism development and economic income, and construct tourism income optimization forecast model. The simulation results show that the model used can accurately predict tourism revenue.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom