z-logo
open-access-imgOpen Access
Research on Recognition Effect of DSCN Network Structure in Hand-Drawn Sketch
Author(s) -
Qunjing Ji
Publication year - 2021
Publication title -
computational intelligence and neuroscience
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.605
H-Index - 52
eISSN - 1687-5273
pISSN - 1687-5265
DOI - 10.1155/2021/4056454
Subject(s) - artificial intelligence , computer science , sketch , pattern recognition (psychology) , support vector machine , artificial neural network , feature extraction , sketch recognition , gesture recognition , gesture , algorithm
With the rapid development of image recognition technology, freehand sketch recognition has attracted more and more attention. How to achieve good recognition effect in the absence of color and texture information is the key to the development of freehand sketch recognition. Traditional nonlearning classical models are highly dependent on manual selection features. To solve this problem, a neural network sketch recognition method based on DSCN structure is proposed in this paper. Firstly, the stroke sequence of the sketch is drawn; then, the feature is extracted according to the stroke sequence combined with neural network, and the extracted image features are used as the input of the model to construct the time relationship between different image features. Through the control experiment on TU-Berlin dataset, the results show that, compared with the traditional nonlearning methods, HOG-SVM, SIFT-Fisher Vector, MKL-SVM, and FV-SP, the recognition accuracy of DSCN network is improved by 15.8%, 10.3%, 6.0%, and 2.9%, respectively. Compared with the classical deep learning model, Alex-Net, the recognition accuracy is improved by 5.6%. The above results show that the DSCN network proposed in this paper has strong ability of feature extraction and nonlinear expression and can effectively improve the recognition accuracy of hand-painted sketches after introducing the stroke order.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom