z-logo
open-access-imgOpen Access
Research on Network Layer Recursive Reduction Model Compression for Image Recognition
Author(s) -
Hongfei Ling,
Weiwei Zhang,
Yingjie Tao,
Mi Zhou
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/4054435
Subject(s) - computer science , artificial neural network , reduction (mathematics) , network architecture , layer (electronics) , artificial intelligence , superposition principle , pattern recognition (psychology) , process (computing) , network model , key (lock) , field (mathematics) , data mining , computer network , mathematics , materials science , mathematical analysis , geometry , computer security , pure mathematics , composite material , operating system
ResNet has been widely used in the field of machine learning since it was proposed. This network model is successful in extracting features from input data by superimposing multiple layers of neural networks and thus achieves high accuracy in many applications. However, the superposition of multilayer neural networks increases their computational cost. For this reason, we propose a network model compression technique that removes multiple neural network layers from ResNet without decreasing the accuracy rate. The key idea is to provide a priority term to identify the importance of each neural network layer, and then select the unimportant layers to be removed during the training process based on the priority of the neural network layers. In addition, this paper also retrains the network model to avoid the accuracy degradation caused by the deletion of network layers. Experiments demonstrate that the network size can be reduced by 24.00%–42.86% of the number of layers without reducing the classification accuracy when classification is performed on CIFAR-10/100 and ImageNet.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom