A Partial Differential Equation-Based Image Restoration Method in Environmental Art Design
Author(s) -
Chen Li
Publication year - 2021
Publication title -
advances in mathematical physics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.283
H-Index - 23
eISSN - 1687-9139
pISSN - 1687-9120
DOI - 10.1155/2021/4040497
Subject(s) - discriminator , image restoration , computer science , artificial intelligence , normalization (sociology) , feature extraction , partial differential equation , image processing , image (mathematics) , computer vision , pattern recognition (psychology) , mathematics , telecommunications , mathematical analysis , detector , sociology , anthropology
With the rapid development of networks and the emergence of various devices, images have become the main form of information transmission in real life. Image restoration, as an important branch of image processing, can be applied to real-life situations such as pixel loss in image transmission or network prone to packet loss. However, existing image restoration algorithms have disadvantages such as fuzzy restoration effect and slow speed; to solve such problems, this paper adopts a dual discriminator model based on generative adversarial networks, which effectively improves the restoration accuracy by adding local discriminators to track the information of local missing regions of images. However, the model is not optimistic in generating reasonable semantic information, and for this reason, a partial differential equation-based image restoration model is proposed. A classifier and a feature extraction network are added to the dual discriminator model to provide category, style, and content loss constraints to the generative network, respectively. To address the training instability problem of discriminator design, spectral normalization is introduced to the discriminator design. Extensive experiments are conducted on a data dataset of partial differential equations, and the results show that the partial differential equation-based image restoration model provides significant improvements in image restoration over previous methods and that image restoration techniques are exceptionally important in the application of environmental art design.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom