z-logo
open-access-imgOpen Access
Effect of Pantograph’s Main Structure on the Contact Quality in High-Speed Railway
Author(s) -
Jiangwen Wang,
Guiming Mei
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/4037999
Subject(s) - pantograph , catenary , contact force , tension (geology) , computer science , discretization , engineering , mechanical engineering , structural engineering , automotive engineering , moment (physics) , mathematics , physics , mathematical analysis , classical mechanics , quantum mechanics
In general, the electrical energy is provided to the high-speed train through the pantograph-catenary sliding contact. The variation of the dynamic contact force is expected to be small enough to keep the good current collection quality and to extend the service life of the pantograph-catenary system. In this paper, the two tension wires of the catenary are discretized by the sine-series expansions, a multibody dynamics theory based on relative coordinates is adopted to describe the dynamic behavior of the pantograph, and the standard deviation (STD) of dynamic contact force is used as the indicator to evaluate the contact quality. The objective is to investigate how the variations of the pantograph’s main structure influence the contact quality, which may support the structural design and parameter optimization of the pantograph in high-speed railway.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom