z-logo
open-access-imgOpen Access
Improving the Quality of Left-Behind Children’s Participation in Sports through Wireless Network Monitoring
Author(s) -
Jinjin Zhao
Publication year - 2021
Publication title -
mobile information systems
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.346
H-Index - 34
eISSN - 1875-905X
pISSN - 1574-017X
DOI - 10.1155/2021/3981893
Subject(s) - discrete cosine transform , computer science , wireless network , distortion (music) , quantization (signal processing) , video quality , quality (philosophy) , image quality , wireless , noise (video) , artificial intelligence , computer vision , telecommunications , image (mathematics) , business , bandwidth (computing) , marketing , amplifier , metric (unit) , philosophy , epistemology
Urbanization is the process that people shift from rural to urban areas, which has led to large numbers of left-behind children in China. The left-behind children stay in rural regions of China while their parents work in urban areas. The left-behind children have few opportunities to participate in sports due to the lacking of concern, and it is not of high quality even though they participate in sports. Therefore, it is necessary to improve the quality of left-behind children's sports participation through wireless network monitoring. Wireless network monitoring transmits high-definition (HD) video streaming in real time to facilitate feedback timely. This paper studies the two-dimensional (2D) integer discrete cosine transform (DCT) and analyzes the reason for image distortion, then an improved DCT coefficient quantization approach is proposed for long-distance real-time transmission of HD video streaming, and a noise processing with a zero-mean noise processing is added in optimized approach to solve the image distortion problem. The experimental results show that the proposed improved approach has a good performance in reducing the blocking artifacts, and within the image reconstruction, the proposed approach improves the subjective video quality.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom