z-logo
open-access-imgOpen Access
Entropy-Driven Global Best Selection in Particle Swarm Optimization for Many-Objective Software Package Restructuring
Author(s) -
Amarjeet Prajapati,
Anshu Parashar,
Sunita Sunita,
Alok Mishra
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/3974635
Subject(s) - particle swarm optimization , computer science , mathematical optimization , selection (genetic algorithm) , entropy (arrow of time) , global optimization , multi swarm optimization , optimization problem , software , machine learning , mathematics , physics , quantum mechanics , programming language
Many real-world optimization problems usually require a large number of conflicting objectives to be optimized simultaneously to obtain solution. It has been observed that these kinds of many-objective optimization problems (MaOPs) often pose several performance challenges to the traditional multi-objective optimization algorithms. To address the performance issue caused by the different types of MaOPs, recently, a variety of many-objective particle swarm optimization (MaOPSO) has been proposed. However, external archive maintenance and selection of leaders for designing the MaOPSO to real-world MaOPs are still challenging issues. This work presents a MaOPSO based on entropy-driven global best selection strategy (called EMPSO) to solve the many-objective software package restructuring (MaOSPR) problem. EMPSO makes use of the entropy and quality indicator for the selection of global best particle. To evaluate the performance of the proposed approach, we applied it over the five MaOSPR problems. We compared it with eight variants of MaOPSO, which are based on eight different global best selection strategies. The results indicate that the proposed EMPSO is competitive with respect to the existing global best selection strategies based on variants of MaOPSO approaches.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom