z-logo
open-access-imgOpen Access
Collaborative Task Offloading Strategy of UAV Cluster Using Improved Genetic Algorithm in Mobile Edge Computing
Author(s) -
Hong Wang
Publication year - 2021
Publication title -
journal of robotics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.303
H-Index - 14
eISSN - 1687-9619
pISSN - 1687-9600
DOI - 10.1155/2021/3965689
Subject(s) - computer science , task (project management) , genetic algorithm , base station , mobile edge computing , process (computing) , enhanced data rates for gsm evolution , real time computing , matlab , cluster (spacecraft) , distributed computing , computer network , artificial intelligence , operating system , management , machine learning , economics
Aiming at the problem that traditional fixed base stations cannot provide good signal coverage due to geographical factors, which may reduce the efficiency of task offloading, a collaborate task offloading strategy using improved genetic algorithm in mobile edge computing (MEC) is proposed by introducing the unmanned aerial vehicle (UAV) cluster. First, for the scenario of the UAV cluster serving multiple ground terminals, a collaborative task offloading model is formulated to offload the tasks to UAVs or the base station selectively. Then, an objective function and related constraints are put forward to minimize the time delay and energy consumption by analysis of those in the communication and computing process in the system while considering many factors. Then, the improved genetic algorithm is introduced to solve the optimization problem, obtaining the optimal collaborative task offloading strategy. To verify the performance of the proposed method, simulations are conducted on MATLAB. Simulation results showed that the joint utilization of UAV and MEC improves the offloading efficiency of the proposed strategy. When the number of UAVs is 12, the total utility is up to 1.83 and the task completion time does not exceed 110 ms. In this case, the task can be reasonably offloaded to UAVs or accomplished locally.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom