Developing an Empirical Relationship to Predict the Wear Characteristics of Ni‐Based Hardfaced Deposits on Nuclear Grade 316LN Austenitic Stainless Steel
Author(s) -
S. Gnanasekaran,
Samson Jerold Samuel Chelladurai,
G. Padmanaban,
Ramesh Arthanari,
V. Balasubramanian
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/3934787
Subject(s) - materials science , metallurgy , austenitic stainless steel , austenite , hardfacing , wear resistance , microstructure , corrosion
Using the nickel-based Colmonoy 5 hardfacing alloy, components made of austenitic stainless steel (ASS) used in nuclear power plants can be hardfaced. Hardfacing is the process of applying complex and wear-resistant materials to substrates that require abrasion resistance. The tribological characteristics of a reactor-grade material NiCr-B hardfaced deposit were studied and reported in this paper. Hence, in this investigation, an effort has been made to develop empirical relationship to predict weight loss of laser hardfaced Ni-based alloy surface incorporating laser parameters using statistical tools such as design of experiments (DoE) and analysis of variance (ANOVA). The developed empirical relationship can be effectively used to trail the weight loss (wear resistance) of laser hardfaced nickel alloy surfaces by altering laser parameters. This method has proven very effective. A power of 1300 W, powder feed rate of 9 g/min, travel speed of 350 mm/min, and defocusing distance of 32 mm were all combined to achieve a minimum weight loss of 0.0164 grams.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom