z-logo
open-access-imgOpen Access
Study on a Heuristic Wheelset Structure without Rail Corrugation on Sharply Curved Tracks
Author(s) -
Gui Ming Mei,
G. X. Chen,
Yang Song,
R. X. Chen
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/3874005
Subject(s) - track (disk drive) , structural engineering , heuristic , oscillation (cell signaling) , engineering , computer science , mechanical engineering , genetics , artificial intelligence , biology
Rail corrugation on low rails of sharp railway curves is still a difficult problem to solve worldwide. Nearly all low rails of the sharp railway curves incur rail corrugation. In the present study, an active method to remedy rail corrugation was studied. From the viewpoint of the frictional self-excited oscillation of a wheelset-track system causing rail corrugation, the effect of wheelset structures on rail corrugation was studied. Three frictional self-excited oscillation models of wheelset-track systems with different wheelset structures were established, which include a heuristic wheelset structure and two being used in the railway industry. The incidence trends of the self-excited oscillations of these three wheelset-track systems were studied. It was found that the wheelset structure has an important effect on rail corrugation, and that the heuristic wheelset structure can restrain or get rid of rail corrugation. With the parameter sensitivity analysis, it was found that when the friction coefficient between the wheel and rail, rail gauge, rail cant, and sleeper span changes to some extent, the heuristic wheelset structure is robust enough to prevent rail corrugation. The proposed heuristic wheelset structure can be used as a potential solution to rail corrugation on sharply curved tracks.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom