z-logo
open-access-imgOpen Access
Research on Intelligent Prediction Method of Financial Crisis of Listed Enterprises Based on Random Forest Algorithm
Author(s) -
Mingxia Jiang,
Xuexia Wang
Publication year - 2021
Publication title -
security and communication networks
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.446
H-Index - 43
eISSN - 1939-0114
pISSN - 1939-0122
DOI - 10.1155/2021/3807480
Subject(s) - random forest , index (typography) , financial crisis , computer science , finance , predictive modelling , data mining , algorithm , machine learning , business , economics , world wide web , macroeconomics
Traditional financial crisis prediction approaches have a tough time extracting the properties of financial data, resulting in financial crisis prediction with insufficient accuracy. As a result, based on the random forest algorithm, an intelligent financial crisis prediction approach for listed enterprises is proposed. The random forest method is used to mine the characteristics of financial data based on financial index data from publicly traded companies. This research develops a financial crisis prediction index system based on the findings of data feature mining. The CCR model is used to assess the efficiency of listed firms’ decision-making units with more input and output, and the efficiency index of each decision-making unit is calculated. The efficiency evaluation index of publicly traded companies is used to divide the severity of the financial crisis. The experimental results reveal that, when compared to standard prediction methods, this method’s forecast accuracy is commensurate with the actual state of businesses, and it can reduce the time it takes to predict financial crises.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom