z-logo
open-access-imgOpen Access
Classification of Electrocardiogram of Congenital Heart Disease Patients by Neural Network Algorithms
Author(s) -
Yongjie Yuan,
Yongjun Zhang,
Junyuan Wang,
Fang Ping
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/3801675
Subject(s) - algorithm , right bundle branch block , convolutional neural network , recurrent neural network , artificial neural network , qrs complex , left bundle branch block , electrocardiography , artificial intelligence , computer science , medicine , cardiology , heart failure
The study intended to explore the effect of different neural network algorithms in the electrocardiogram (ECG) classification of patients with congenital heart disease (CHD). Based on the single convolutional neural network (CNN) ECG algorithm and the recurrent neural network (RNN) ECG algorithm, a multimodal neural network (MNN) ECG algorithm was constructed utilizing the MIT-BIH database as training set and test set. Furthermore, the MNN ECG algorithm was optimized to establish an improved MNN (IMNN) algorithm, which was applied to the diagnosis of CHD patients. The CHD patients admitted between August 2016 and August 2019 were selected for analysis to compare the classification effect and accuracy rate of IMNN, MNN, CNN ECG, and RNN ECG algorithms. It was found that the RNN ECG algorithm had higher classification sensitivity and true positive rate in terms of normal or bundle (NB) branch block beat, supraventricular abnormal (SA) rhythm, abnormal ventricular (AV) beat, and fusion beat (FB) than the CNN ECG algorithm ( P < 0.05 ), and the classification sensitivity and true positive rate of IMNN algorithm in the four aspects were significantly higher than those of MNN algorithm ( P < 0.05 ). The classification accuracy of CNN ECG algorithm and RNN ECG algorithm was above 98%, while that of MNN algorithm and IMNN algorithm was better than that of CNN ECG algorithm and RNN ECG algorithm, and the accuracy rate can reach 98.5% or more. Moreover, the accuracy rate of the IMNN algorithm can reach more than 98%. In conclusion, IMNN not only has a good classification ability in the simulated environment but also performs well in the actual environment, which is worthy of clinical promotion.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom