Study on the Dynamic Evolution of Through-Crack in the Double Hole of Elliptical Bipolar Linear-Shaped Charge Blasting
Author(s) -
Bo Wu,
Shixiang Xu,
Guowang Meng,
Yaozhong Cui,
Junhua Cai,
Yao Zhang
Publication year - 2021
Publication title -
shock and vibration
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.418
H-Index - 45
eISSN - 1875-9203
pISSN - 1070-9622
DOI - 10.1155/2021/3792765
Subject(s) - rock blasting , materials science , charge (physics) , structural engineering , shaped charge , mechanics , geotechnical engineering , explosive material , engineering , physics , chemistry , quantum mechanics , organic chemistry
Seeking the law of through-crack in the double hole of shaped charge can help reveal the rock failure mechanism of directional controlled blasting. Using LS-DYNA numerical simulation analysis, the dynamic mechanical behaviors of double-hole crack development and double-hole crack penetration in elliptical bipolar linear-shaped charge blasting and ordinary blasting were compared and studied. The results showed that it was difficult to form a straight line through the double holes under ordinary blasting, while easy to cause over-under-excavation problems. The blasting of the elliptical bipolar linear-shaped charge had a significant effect on the formation of directional crack. The crack penetrated along the connecting center line of the two holes. The main crack growth form was tensile fracture mode, and the explosion gas was the important driving force for continuous crack growth. The elliptical bipolar linear-shaped charge blasting produced fewer cracks in the nonenergy-accumulating direction, which could effectively reduce the damage of the retained rock mass.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom