Rebalancing Strategy for Bike-Sharing Systems Based on the Model of Level of Detail
Author(s) -
Zhenghua Hu,
Kejie Huang,
Enyou Zhang,
Qiang Ge,
Xiaoxue Yang
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/3790888
Subject(s) - bike sharing , renting , computer science , scheme (mathematics) , genetic algorithm , service (business) , operations research , cluster analysis , transport engineering , business , artificial intelligence , machine learning , engineering , marketing , mathematical analysis , civil engineering , mathematics
Traveling by bike-sharing systems has become an indispensable means of transportation in our daily lives because green commuting has gradually become a consensus and conscious action. However, the problem of “difficult to rent or to return a bike” has gradually become an issue in operating the bike-sharing system. Moreover, scientific and systematic schemes that can efficiently complete the task of rebalancing bike-sharing systems are lacking. This study aims to introduce the basic idea of the k-divisive hierarchical clustering algorithm. A rebalancing strategy based on the model of level of detail in combination with genetic algorithm was proposed. Data were collected from the bike-sharing system in Ningbo. Results showed that the proposed algorithm could alleviate the problem of the uneven distribution of the demand for renting or returning bikes and effectively improve the service from the bike-sharing system. Compared with the traditional method, this algorithm helps reduce the effective time for rebalancing bike-sharing systems by 28.3%. Therefore, it is an effective rebalancing scheme.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom