Experimental and Numerical Analysis of Soil Cracking Characteristics under Evaporation
Author(s) -
Di Feng,
Jiakun Gong,
Xiaodong Ni,
Jie Ren
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/3790345
Subject(s) - cracking , evaporation , shrinkage , water content , geotechnical engineering , materials science , moisture , environmental science , geology , composite material , physics , thermodynamics
There are numerous cracks on soil surface in nature. These cracks are mainly formed by the continuous water loss and shrinkage of soil under evaporation. Cracks have an important effect on the properties of soil. The analysis of soil moisture movement and cracking characteristics under evaporation is of great significance to the engineering construction in the cracked soil area. In this work, an experimental study was conducted to investigate the development of soil cracks. Crack geometrical parameters were acquired at various developmental stages. According to this, the crack evolution characteristic was described qualitatively. The law of soil water movement was analyzed through the numerical simulation of evaporation effect on cracked soil. The relationship between soil moisture content and crack width was revealed, and the dynamic prediction of crack development under evaporation was realized. The results show that the development and evaporation process of soil cracks can be divided into three distinct stages, and the longer the stable evaporation time, the greater the development of cracks.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom