Analyzing Accident Injury Severity via an Extreme Gradient Boosting (XGBoost) Model
Author(s) -
Shubo Wu,
Quan Yuan,
Zhongwei Yan,
Qing Xu
Publication year - 2021
Publication title -
journal of advanced transportation
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.577
H-Index - 46
eISSN - 2042-3195
pISSN - 0197-6729
DOI - 10.1155/2021/3771640
Subject(s) - crash , china , poison control , injury prevention , transport engineering , boosting (machine learning) , occupational safety and health , descriptive statistics , human factors and ergonomics , geography , statistical analysis , suicide prevention , environmental health , computer science , statistics , medicine , engineering , mathematics , artificial intelligence , archaeology , pathology , programming language
Vehicle to vulnerable road user (VRU) crashes occupy a large proportion of traffic crashes in China, and crash injury severity analysis can support traffic managers to understand the implicit rules behind the crashes. Therefore, 554 VRUs-involved crashes are collected from January, 2017, to February, 2021, in a city in northern China, including 322 vehicle-pedestrian crashes and 232 vehicle-bicycle crashes. First, a descriptive statistical analysis is conducted to investigate the characteristics of VRUs-involved crashes. Second, the extreme gradient boosting (XGBoost) model is introduced to identify the importance of risk factors (i.e., time of day, day of week, rushing hour, crash position, weather, and crash involvements) of VRUs-involved crashes. The statistical analysis demonstrates that the risk factors are closely related to VRUs-involved crash injury severity. Moreover, the results of XGBoost reveal that time of day has the greatest impact on VRUs-involved crashes, and crash position shows the minimum importance among these risk factors.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom