z-logo
open-access-imgOpen Access
PrivCrowd: A Secure Blockchain-Based Crowdsourcing Framework with Fine-Grained Worker Selection
Author(s) -
Qiliang Yang,
Tao Wang,
Wenbo Zhang,
Bo Yang,
Yong Yu,
Haiyu Li,
Jingyi Wang,
Zirui Qiao
Publication year - 2021
Publication title -
wireless communications and mobile computing
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.42
H-Index - 64
eISSN - 1530-8677
pISSN - 1530-8669
DOI - 10.1155/2021/3758782
Subject(s) - blockchain , crowdsourcing , computer science , selection (genetic algorithm) , computer security , world wide web , artificial intelligence
Blockchain-based crowdsourcing systems can mitigate some known limitations of the centralized crowdsourcing platform, such as single point of failure and Sybil attacks. However, blockchain-based crowdsourcing systems still endure the issues of privacy and security. Participants’ sensitive information (e.g., identity, address, and expertise) have the risk of privacy disclosure. Sensitive crowdsourcing tasks such as location-based data collection and labeling images including faces also need privacy-preserving. Moreover, current work fails to balance the anonymity and public auditing of workers. In this paper, we present a secure blockchain-based crowdsourcing framework with fine-grained worker selection, named PrivCrowd which exploits a functional encryption scheme to protect the data privacy of tasks and to select workers by matching the attributes. In PrivCrowd, requesters and workers can achieve both exchange and evaluation fairness by calling smart contracts. Solutions collection also can be done in a secure, sound, and noninteractive way. Experiment results show the feasibility, usability, and efficiency of PrivCrowd.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom