z-logo
open-access-imgOpen Access
An Approach to the Geometric-Arithmetic Index for Graphs under Transformations’ Fact over Pendent Paths
Author(s) -
M. Asif,
Hamad Almohamedh,
Muhammad Hussain,
Khalid Alhamed,
Abdulrazaq Alsuhail Almutairi,
Sultan Almotairi
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/3745862
Subject(s) - graph , combinatorics , vertex (graph theory) , discrete mathematics , mathematics , connectivity , invariant (physics) , topological index , mathematical physics
Graph theory is a dynamic tool for designing and modeling of an interconnection system by a graph. The vertices of such graph are processor nodes and edges are the connections between these processors nodes. The topology of a system decides its best use. Geometric-arithmetic index is one of the most studied graph invariant to characterize the topological aspects of underlying interconnection networks or graphs. Transformation over graph is also an important tool to define new network of their own choice in computer science. In this work, we discuss transformed family of graphs. Let Γ n k , l be the connected graph comprises by k number of pendent path attached with fully connected vertices of the n-vertex connected graph Γ . Let A α Γ n k , l and A α β Γ n k , l be the transformed graphs under the fact of transformations A α and A α β , 0 ≤ α ≤ l , 0 ≤ β ≤ k − 1 , respectively. In this work, we obtained new inequalities for the graph family Γ n k , l and transformed graphs A α Γ n k , l and A α β Γ n k , l which involve GA Γ . The presence of GA Γ makes the inequalities more general than all those which were previously defined for the GA index. Furthermore, we characterize extremal graphs which make the inequalities tight.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom