Research on Deviation Detection of Belt Conveyor Based on Inspection Robot and Deep Learning
Author(s) -
Yi Liu,
Changyun Miao,
Xianguo Li,
Guowei Xu
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/3734560
Subject(s) - conveyor belt , artificial intelligence , computer science , computer vision , hough transform , standard deviation , edge detection , enhanced data rates for gsm evolution , robustness (evolution) , robot , mathematics , image processing , image (mathematics) , engineering , statistics , mechanical engineering , biochemistry , chemistry , gene
The deviation of the conveyor belt is a common failure that affects the safe operation of the belt conveyor. In this paper, a deviation detection method of the belt conveyor based on inspection robot and deep learning is proposed to detect the deviation at its any position. Firstly, the inspection robot captures the image and the region of interest (ROI) containing the conveyor belt edge and the exposed idler is extracted by the optimized MobileNet SSD (OM-SSD). Secondly, Hough line transform algorithm is used to detect the conveyor belt edge, and an elliptical arc detection algorithm based on template matching is proposed to detect the idler outer edge. Finally, a geometric correction algorithm based on homography transformation is proposed to correct the coordinates of the detected edge points, and the deviation degree (DD) of the conveyor belt is estimated based on the corrected coordinates. The experimental results show that the proposed method can detect the deviation of the conveyor belt continuously with an RMSE of 3.7 mm, an MAE of 4.4 mm, and an average time consumption of 135.5 ms. It improves the monitoring range, detection accuracy, reliability, robustness, and real-time performance of the deviation detection of the belt conveyor.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom