z-logo
open-access-imgOpen Access
Compound Fault Diagnosis of Gearbox Based on RLMD and SSA-PNN
Author(s) -
Shitong Liang,
Jie Ma
Publication year - 2021
Publication title -
mathematical problems in engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.262
H-Index - 62
eISSN - 1026-7077
pISSN - 1024-123X
DOI - 10.1155/2021/3716033
Subject(s) - pattern recognition (psychology) , probabilistic neural network , fault (geology) , artificial neural network , artificial intelligence , feature vector , computer science , algorithm , engineering , data mining , time delay neural network , seismology , geology
In order to solve the difficulty in the classification of gearbox compound faults, a gearbox fault diagnosis method based on the sparrow search algorithm (SSA) improved probabilistic neural network (PNN) is proposed. Firstly, the gearbox fault signal is decomposed into a series of product functions (PFs) by robust local mean decomposition (RLMD). Then, the permutation entropy of PFs, which contains much fault information, is calculated to construct the feature vector and input it into the SSA-PNN model. The experimental results show that compared with the traditional fault diagnosis methods based on EMD-BP and EEMD-PNN, the gearbox fault diagnosis method based on RLMD and SSA-PNN has higher diagnosis accuracy.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom