Big Data-Driven Macroeconomic Forecasting Model and Psychological Decision Behavior Analysis for Industry 4.0
Author(s) -
Jie Liu
Publication year - 2021
Publication title -
complexity
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.447
H-Index - 61
eISSN - 1099-0526
pISSN - 1076-2787
DOI - 10.1155/2021/3662204
Subject(s) - big data , computer science , value (mathematics) , process (computing) , government (linguistics) , china , operations research , data mining , machine learning , engineering , linguistics , philosophy , political science , law , operating system
With the advent of Industry 4.0, economic development has become a rapid information age. The content of macroeconomic forecast is very extensive, and the existence of big data technology can provide the government with multilevel, diversified, and complete information and comprehensively process, integrate, summarize, and classify these pieces of information. This paper forecasts the CPI value in the next 12 months according to the CPI in China in the recent 20 years. Compared with the traditional forecasting methods, the forecasting results have higher accuracy and timeliness. At the same time, the trend of growth rate of industrial value-added is analyzed, and the experiments on MAE and RMSE show that the method proposed in this paper has obvious advantages. It also analyzes the disadvantages of traditional psychological decision-making behavior analysis, introduces the development status and advantages of big data-driven psychological decision-making behavior analysis, and opens up new research ideas for psychological decision-making analysis.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom