Rainfall Erosion Predictions for Artificial High-Filled Embankment with Reinforcement
Author(s) -
Shangwei Wu,
Dongming Wu,
Xiaofei Jing,
Xuanyi Chen,
Yijun Wang,
Luhua Ye
Publication year - 2021
Publication title -
advances in materials science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.356
H-Index - 42
eISSN - 1687-8442
pISSN - 1687-8434
DOI - 10.1155/2021/3648105
Subject(s) - ditch , erosion , levee , intensity (physics) , reinforcement , geotechnical engineering , dike , environmental science , materials science , geology , geomorphology , composite material , ecology , physics , geochemistry , quantum mechanics , biology
In recent years, rainstorm disasters caused by global warming have frequently occurred in China. It has caused serious damage to artificial high embankments. In this paper, the influence of rainfall intensity, slope, and reinforced layers on the erosion and destruction of the artificial high embankment is deeply analyzed. Through the model test, the rainfall erosion prediction model is established. The results show that (1) the gully width, depth, and erosion amount increased with the increase in rainfall intensity and slope and decreased with the increase in reinforcement layers; (2) the final ditch shape of the embankment is influenced by steel bars; and (3) according to the model test data, the mathematical model of dike scouring is established. Rainfall intensity and the coupling between slope and reinforced layers are considered in the model. It can be used for predicting erosion during rainfall.
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom