z-logo
open-access-imgOpen Access
A Comparison of Gaussian Process and M5P for Prediction of Soil Permeability Coefficient
Author(s) -
Binh Thai Pham,
Haï-Bang Ly,
Nadhir AlAnsari,
Lanh Si Ho
Publication year - 2021
Publication title -
scientific programming
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.269
H-Index - 36
eISSN - 1875-919X
pISSN - 1058-9244
DOI - 10.1155/2021/3625289
Subject(s) - permeability (electromagnetism) , correlation coefficient , gaussian process , coefficient of determination , computer science , soil science , gaussian , artificial intelligence , machine learning , environmental science , chemistry , biochemistry , computational chemistry , membrane
The permeability coefficient (k) of soil is one of the most important parameters affecting soil characteristics such as shear strength or settlement. Thus, determining soil permeability coefficient is very crucial; however, a field test for determining this parameter is difficult, time-consuming, and expensive. In this study, soft computing methods, namely, M5P and Gaussian process (GP), for estimating the permeability coefficient were constructed and compared. The results of this paper indicate that the two soft computing algorithms functioned well in predicting k. These two methods gave high accuracy of prediction capability. The determination coefficient of M5P (R2 = 0.766) was higher than that (R2 = 0.700) of GP. This implies that the M5P model is more reliable estimation than the GP model in predicting soils’ permeability coefficient (k). This proves that applying these machine learning techniques can provide an alternative for predicting basic soil parameters, including the permeability coefficient of soil.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom