On the Degree of the GCD of Random Polynomials over a Finite Field
Author(s) -
Kui Liu,
Meijie Lu
Publication year - 2021
Publication title -
journal of mathematics
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.252
H-Index - 13
eISSN - 2314-4785
pISSN - 2314-4629
DOI - 10.1155/2021/3619347
Subject(s) - mathematics , degree (music) , combinatorics , distribution (mathematics) , finite field , monic polynomial , discrete mathematics , polynomial , mathematical analysis , physics , acoustics
In this paper, we focus on the degree of the greatest common divisor ( gcd ) of random polynomials over F q . Here, F q is the finite field with q elements. Firstly, we compute the probability distribution of the degree of the gcd of random and monic polynomials with fixed degree over F q . Then, we consider the waiting time of the sequence of the degree of gcd functions. We compute its probability distribution, expectation, and variance. Finally, by considering the degree of a certain type gcd , we investigate the probability distribution of the number of rational (i.e., in F q ) roots (counted with multiplicity) of random and monic polynomials with fixed degree over F q .
Accelerating Research
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom
Address
John Eccles HouseRobert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom